COLEGIO SAN CARLOS DE QUILICURA MATEMÁTICA/TERCERO MEDIO J. VELÁSQUEZ/L. CONTRERAS/2020 SESIÓN 2 (45 minutos)

<u>Guía de Trabajo Matemática Nº 29</u>

(Del 16 al 20 de noviembre)

Nombre	Curso	Fecha
	IIIº	/ 11/ 2020

OA3: Aplicar modelos matemáticos que describen fenómenos o situaciones de crecimiento y decrecimiento, que involucran las funciones exponencial y logarítmica, de forma manuscrita, con uso de herramientas tecnológicas y promoviendo la búsqueda, selección, contrastación y verificación de información en ambientes digitales y redes sociales.

CONTENIDOS QUE SE TRABAJARÁN EN ESTA GUÍA

UNIDAD II: "MEDIANTE MODELOS MATEMÁTICOS SE PUEDEN DESCRIBIR Y HACER PREDICCIONES ACERCA DE SITUACIONES Y FENÓMENOS"

- Función exponencial
- Crecimiento y decrecimiento exponencial

INSTRUCCIONES

- El tiempo estimado para el desarrollo de la guía será de 90 minutos. Puedes realizarla en dos sesiones de 45 minutos.
- Los materiales que necesitaras para el desarrollo de la guía serán: cuaderno de la asignatura, lápiz mina, lápiz pasta, goma, calculadora, saca puntas y una regla.
- El desarrollo de los ejercicios escríbelo con lápiz mina y la respuesta final escríbela con lápiz pasta.
- En la Guía de Trabajo N° 30 se anexará la retroalimentación de esta guía.

¡Hola! Un gusto saludarte de nuevo, deseando que te encuentres muy bien junto a tus familiares y seres queridos.

En esta oportunidad, comenzamos una nueva unidad: Álgebra y funciones, y trabajaremos los temas "Función exponencial" y "Función Logarítmica".

Partiremos por "Función exponencial" donde el objetivo será describir modelos y representar gráficamente las funciones exponenciales.

;ÁNIMO Y MUCHOS ÉXITOS!

FUNCIÓN EXPONENCIAL

La expresión $y = a^x$, o, $f(x) = a^x$, (0 < a < 1 o a > 1) se denomina **función exponencial** donde el valor de a puede ser cualquier **número positivo** excepto el 1.

Recordemos que una función es una relación entre dos variables, en la que a cada valor de la primera variable independiente x, le corresponde un único valor de la segunda variable dependiente y

Las funciones exponenciales, son relaciones funcionales en las cuales la variable independiente x es el exponente de la potencia o parte de la potencia que conforma.

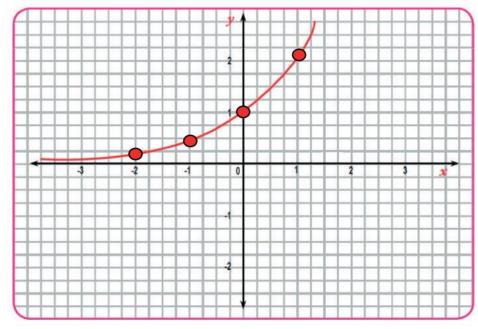
La función que a cada número real x le hace corresponder la potencia a^x se llama **función exponencial de base** a **y exponente** x.

Ejemplos:

Dada la función exponencial $y = f(x) = 3^x$ y su tabla correspondiente:

х	-4	-3	_	_	0	1	2	3	4
	0,0625						4	8	16

Podemos graficar esta función:



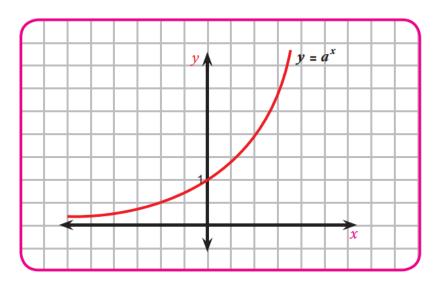
ELEMENTOS DE LA FUNCIÓN EXPONENCIAL

$$f: \mathbb{R} \to \mathbb{R}^+$$

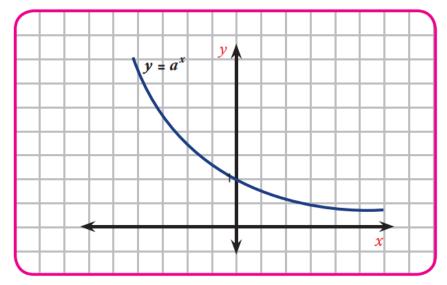
$$x \to y = f(x) = a^x$$

$$a > 0, a \neq 1$$

La base a > 1 hace que la función sea **creciente**:



La base 0 < a < 1 hace que la función sea **decreciente:**



Recuerda que para graficar una función es necesario "evaluar" la función, construir una tabla de valores y luego llevar a un gráfico.

ACTIVIDAD

Evaluar una función y realizar su gráfica.

Observe atentamente el proceso de evaluación de la función.

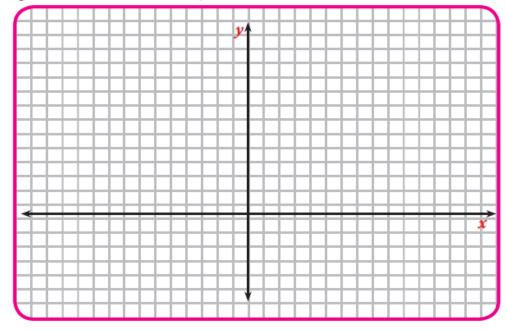
Dada la función $f(x) = 3^x$, evaluamos la función para x=0.

Reemplazamos en **x** su valor **cero**, $f(0)=3^{\circ} \longrightarrow f(0)=1$.

1) Completa con este mismo procedimiento los cuadros en blanco.

Función	Valor de <i>x</i> a evaluar	Función evaluada		$y = f(x) = 3^x$	х
	x = 0	f(0) = 3 ⁰ = 1		1	0
$f(\mathbf{x}) = 3^{\mathbf{x}}$	<i>x</i> = −1	f(-1) = 3 ()	→		-1
	<i>x</i> = 1	$f(1) = 3^1 =$			1
	<i>x</i> = −2	f(-2) = 3 ⁻² =			-2
	<i>x</i> = 2	f(2) = 3 =			2

2) Realiza la grafica de la situación función $f(x) = 3^x$



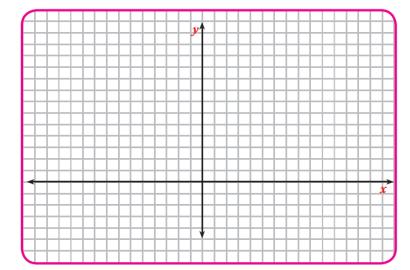
3) Determina si la función es creciente o decreciente

.....

Realice la gráfica de las funciones exponenciales, cada curva con un color distinto.

a)
$$y = f(x) = 2^x$$

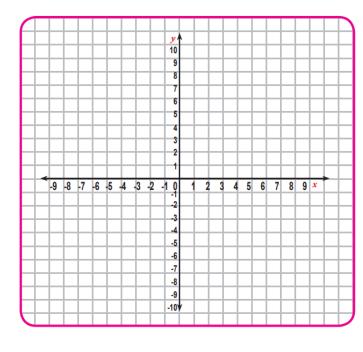
a)
$$y = f(x) = 2^x$$
 b) $y = f(x) = 2^x + 1$



¿Qué podría concluir al observar la gráfica de	
¿Cómo cree que será el gráfico de la función	

ACTIVIDAD Realice la gráfica de las siguientes funciones exponenciales.

a)
$$y = h(x) = \left(\frac{1}{2}\right)^x$$
 b) $y = f(x) = \left(\frac{1}{2}\right)^x + 1$

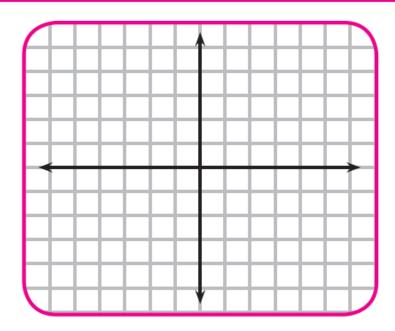


¿Qué podría concluir al observar la gráfica de las funciones? ¿Cómo cree que será el gráfico de la función $y = f(x) = \left(\frac{1}{2}\right)^x - 1$?

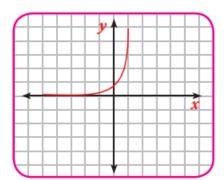
AUTOEVALUACIÓN

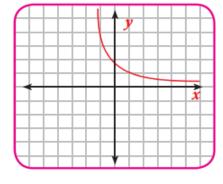
1) Complete la tabla de las funciones dadas, esboce sus gráficas y compárelas:

х	-3	-2	-1	0	1	2	3	4	5
$y = f(x) = 3^x$	<u>1</u> 9			1		9			
$y = f(x) = \left(\frac{1}{3}\right)^x$		9	3				<u>1</u> 27		



2) Asocie cada función dada con su correspondiente esbozo de gráfica uniendo con una línea:





$$f_{I}(x) = \left(\frac{1}{3}\right)^{x}$$

$$f_{2}(x) = 1 - 2^{x}$$

$$f_{3}(x) = 4^{x}$$

$$f_{4}(x) = \left(\frac{1}{9}\right)^{x}$$

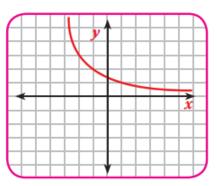
$$f_{5}(x) = 10^{x}$$

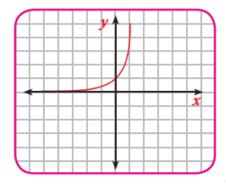
$$f_2(x) = 1 - 2^x$$

$$f_3(x) = 4^x$$

$$f_4(x) = \left(\frac{1}{9}\right)^x$$

$$f_5(x) = 10^x$$





SITUACIONES Y PROBLEMAS QUE SE RESUELVEN UTILIZANDO LA FUNCIÓN EXPONENCIAL

Resolveremos algunas situacionesreales con la aplicación de funciones exponenciales:

1) Las diferencias de presiones, que se producen al ascender una montaña, son la causa que algunas personas se apunen y tengan fuertes dolores de oídos. Investigaciones científicas determinaron que la presión atmosférica está dada por la expresión:

$$y = f(x) = \left(\frac{9}{10}\right)^x$$

x: se mide en miles de metros.

y: se mide en atmósferas

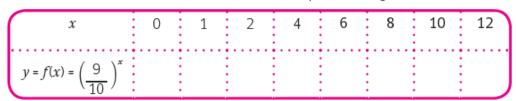
a) Realice la gráfica de la función.

b) ¿Qué presión hay a cuatro mil metros de altura?

Solución:

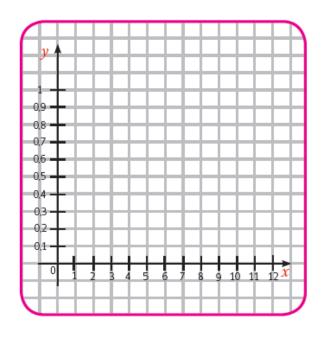
a) Para realizar la gráfica es necesario hacer una tabla de valores, evaluar la función y ubicar los puntos correspondientes en el plano cartesiano:

Como x: se mide en miles de metros completaré la siguiente tabla:



b) El valor x = 4 indica cuatro mil metros de altura y la tabla muestra el valor de y =

Respuesta: Por lo tanto a los cuatro mil metros hay atmósfera de presión.



Como se explicó anteriormente, las funciones exponenciales son muy útiles para describir algunas situaciones, como por ejemplo:

1) El crecimiento demográfico de una población de bacterias, esta modelado por una función exponencial de la forma:

$$P(t) = P_0 \cdot 2^t$$

donde:

 P_0 : es la población inicial de bacterias cuando t = 0 t: es el tiempo medido en horas

Si la población bacteriana inicial es de 100 bacterias, complete la tabla según los tiempos en horas dados:

t: tiempo en horas	0	1	2	3	4	5	6
Población <i>P(t)</i>	100		400	1.600		6.400	

Sugerencia:

Para completar la tabla, proceda reemplazando cada valor de t, en la función:

$$P(t) = P_0 \cdot 2^t \rightarrow P(t) = 100 \cdot 2^t$$

$$\downarrow \downarrow$$

$$P(0) = 100 \cdot 2^{0} \rightarrow P(0) = 100 \cdot 1 = 100$$

$$P(1) = 100 \cdot 2^{1} \rightarrow P(1) = 100 \cdot 2 = 200$$

$$P(2) = 100 \cdot 2^{2} \rightarrow P(2) = 100 \cdot 4 = 400$$

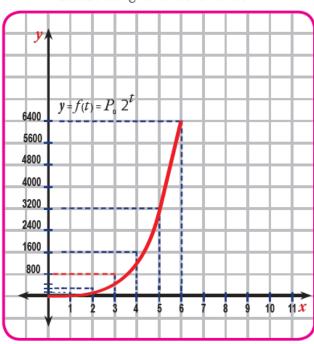
$$P(3) = 100 \cdot 2^{3} \rightarrow P(3) = 100 \cdot ___=$$

$$P(4) = 100 \cdot 2^4 \rightarrow P(4) = 100 \cdot 16 = 1.600$$

$$P(5) = 100 \cdot 2^{5} \rightarrow P(5) = 100 \cdot ___=$$

$$P(6) = 100 \cdot 2^{6} \rightarrow P(6) = 100 \cdot 64 = 6.400$$

Esbozo del gráfico de la función:



¿Qué pasaría si P_0 = 10? Complete la siguiente tabla y esboce el gráfico $x: P(t)=P_0 \cdot 2^t --> P(t)=....\cdot 2^t$

t: tiempo en horas	0	1	2	3	4	5	6	7	8	9	10
Población $P(t)$	10										

Realice el gráfico de la	función:
Si la población inicial (co	ando t = 0) es 10 (P_0 = 10)¿Cuál será el tamaño de la población al cabo de ${f 5}$ horas?

Si la población inicial (cuando t = 0) es 10 (P_0 = 10) **¿Cuál será el tamaño de la población al cabo de 5 horas?**Si la población inicial (cuando t = 0) es 20 (P_0 = 20) **¿Cuál será el tamaño de la población al cabo de 7 horas?**

NUESTRA CLASE ONLINE N° 18 SE EFECTUARÁ EL PRÓXIMO MARTES 17 DE NOVIEMBRE PARA III° A Y III° B Y EL DÍA JUEVES 19 DE NOVIEMBRE PARA III° C, A TRAVÉS DE LA PLATAFORMA GOOGLE MEET, ASI QUE DEBES BUSCAR EL LINK PARA UNIRTE A LA CLASE EN TU CALENDARIO.

CURSO: III° A

Nombre del profesor: Josimar Velásquez **Día:** martes 17 de

noviembre

Hora: 10:00 – 10:45 am

CURSO: III° B

Nombre del profesor: Josimar Velásquez **Día:** martes 17 de noviembre

Hora:11:00 am – 11:45am

CURSO: III° C

Nombre del profesor: Loreto Contreras **Día:** jueves 19 de

noviembre

Hora: 4:00 pm – 4:45 pm

Meet

¡TE ESPERAMOS! CUÍDATE MUCHO