

Guía de Trabajo Nº 29 Matemática

(Del 16 al 20 de noviembre)

Nombre	Curso	Fecha		
	IIIº	/ 11/ 2020		

OA3: Aplicar modelos matemáticos que describen fenómenos o situaciones de crecimiento y decrecimiento, que involucran las funciones exponencial y logarítmica, de forma manuscrita, con uso de herramientas tecnológicas y promoviendo la búsqueda, selección, contrastación y verificación de información en ambientes digitales y redes sociales.

CONTENIDOS QUE SE TRABAJARÁN EN ESTA GUÍA

UNIDAD II: "MEDIANTE MODELOS MATEMÁTICOS SE PUEDEN DESCRIBIR Y HACER PREDICCIONES ACERCA DE SITUACIONES Y FENÓMENOS"

- Función exponencial
- Crecimiento y decrecimiento exponencial

INSTRUCCIONES

- El tiempo estimado para el desarrollo de la guía será de 90 minutos. Puedes realizarla en dos sesiones de 45 minutos.
- Los materiales que necesitaras para el desarrollo de la guía serán: cuaderno de la asignatura, lápiz mina, lápiz pasta, goma, calculadora, saca puntas y una regla.
- El desarrollo de los ejercicios escríbelo con lápiz mina y la respuesta final escríbela con lápiz pasta.

Google Classroom

;Hola! Un gusto saludarte de nuevo, deseando que te encuentres muy bien junto a tus familiares y seres queridos.

En esta ocasión, te invito a realizar una ACTIVIDAD EN CLASSROOM que estará disponible desde el lunes 16 de noviembre a partir de las 08:00 horas hasta las 23:59 horas del día viernes 20 de noviembre. Dicha actividad, está relacionada con "FUNCIÓN EXPONENCIAL", tema que trabajamos en la CLASE ONLINE

N° 17 y N° 18 y en la Guía N°29.

Entonces, ¿Qué debes hacer para cumplir con esta ACTIVIDAD?

- 1. Resuelve en tu cuaderno de forma ordenada los ejercicios planteados en esta guía. Es importante que cada ejercicio tenga su desarrollo, ¡no escribas sólo la respuesta!
- 2. Al finalizar la actividad, tómale fotos a tu cuaderno (verifica que en las fotografías se pueda apreciar bien el trabajo que realizaste).
- **3.** Posteriormente, ingresa a CLASSROOM, busca la asignatura "Matemática", luego haces clic sobre la pestaña "Trabajo en clase" y luego "TAREAS", ahí podrás ver publicada la actividad que lleva por nombre "ACTIVIDAD N° 3: FUNCIÓN EXPONENCIAL".
- **4.** Luego, haz clic en "Ver tarea" y luego en la parte superior derecha haz clic donde dice "Agregar o crear".
- **5.** Al hacer clic en "Agregar o crear" te aparece una lista desplegable con varias opciones (como se muestra en la imagen) y vas a hacer clic en "Archivo" para cargar las fotografías que le tomaste a tu cuaderno con el desarrollo de los ejercicios.

ACTIVIDAD N° 3 PARA SER CARGADA EN CLASSROOM

1) Complete la tabla de las funciones dadas, esboce sus gráficas y compárelas:

x	-3	-2	-1	0	1	2	3	4	5
$y = f(x) = 3^x$	<u>1</u> 9			1		9			
$y = f(x) = \left(\frac{1}{3}\right)^x$		9	3				$\frac{1}{27}$		

2) Asocie cada función dada con su correspondiente esbozo de gráfica uniendo con una línea:

RESUELVE EL SIGUIENTE PROBLEMA

1) Las diferencias de presiones, que se producen al ascender una montaña, son la causa que algunas personas se apunen y tengan fuertes dolores de oídos. Investigaciones científicas determinaron que la presión atmosférica está dada por la expresión:

$$y = f(x) = \left(\frac{9}{10}\right)^x$$

x : se mide en miles de metros.

y: se mide en atmósferas

a) Realice la gráfica de la función.

b) ¿Qué presión hay a cuatro mil metros de altura?

Solución:

a) Para realizar la gráfica es necesario hacer una tabla de valores, evaluar la función y ubicar los puntos correspondientes en el plano cartesiano:

Como x: se mide en miles de metros completaré la siguiente tabla:

x	0	1	2	4	6	8	10	12
$y = f(x) = \left(\frac{9}{10}\right)^x$								

b) El valor x = 4 indica cuatro mil metros de altura y la tabla muestra el valor de y = atmósferas.

Respuesta: Por lo tanto a los cuatro mil metros hay atmósfera de presión.

γÅ						
ľ						
J.L						
Je T						
ШТ						
-0.1 T						
0	1 2 3	4 5	6 7	8 9	10 11	$12\overline{x}$