

GUÍA N° 26 - CIENCIAS NATURALES - SOLUCIONARIO. EJE FISICA - UNIDAD : "CIRCUITO ELÉCTRICO".

Nombre	Curso	Fecha
	8° A-B-C	/

Tiempo estimado de trabajo.	Indicadores.	
➤ 45 minutos.	> Determinan resistencia de un circuito eléctrico.	

Recursos:

Cuaderno de estudio – carpeta para archivar las guías trabajadas – internet e impresora. (Si no tienes internet e impresora, puedes trabajar en tu cuaderno las actividades).

OA10:

Analizar un circuito eléctrico domiciliario y comparar experimentalmente los circuitos eléctricos, en serie y en paralelo, en relación con la: Energía eléctrica. Diferencia de potencial. Intensidad de corriente. Potencia eléctrica. Resistencia eléctrica. Eficiencia energética.

Objetivo de aprendizaje: - Comprueban resistencia- intensidad – voltaje de un circuito eléctrico.

INVITACIÓN A CLASES

QUERIDOS ESTUDIANTES, SE SOLICITA SER PUNTUAL.

Google Meet

EL LINK PARA INGRESAR SE ENCUENTRA EN TU "CALENDARIO".

CS. NATURALES - MARIBEL ESCOBAR Q.

8° A 16:00 HRS.

8° B 17:00 HRS.

8° C 15:00 HRS.

CLASE 3: RETOMAR CONTENIDOS DE LA GUÍA ANTERIOR.

La potencia eléctrica se mide en watt (W) y se expresa como:

Potencia (P) = Intensidad (I) \times Voltaje (Δ V)

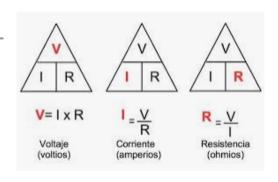
Para obtener la intensidad, debemos reorganizar la ecuación anterior:

$$I{=}\frac{P}{\Delta V}$$

Conociendo la potencia eléctrica de un artefacto, podrás determinar la energía eléctrica que utiliza con la siguiente fórmula:

Energía (E) = Potencia (P) x Tiempo (t)

El resultado se expresa en kilowatt-hora (kWh).


energía potencia tiempo

 $1 \text{ kWh} = 1 \text{ kW} \cdot 1 \text{ h}$

 $1 \, \text{kWh} = 1000 \, \text{W} \cdot 3600 \, \text{s}$

 $1 \text{ kWh} = 3,6 \times 10^6 \text{ J}$

La ley de Ohm

APLICA.

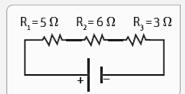
1.-

ANALIZA EVIDENCIAS

En la tabla se entregan los valores de potencia de una serie de artefactos eléctricos de un hogar (considerando que se conectan a 220 V). A partir de la información contenida en la tabla, responde las siguientes preguntas:

a. ;	Cuál es	la energía	consumida	por cada	uno de l	los artei	factos en una	hora?
------	---------	------------	-----------	----------	----------	-----------	---------------	-------

- b. ¿Qué artefacto emplea menos energía en un mismo intervalo de tiempo?
- c. Reúne los siguientes artefactos en tu hogar: microondas, secador de pelo y aspiradora. Luego, busca en ellos la potencia que utiliza cada uno. Suponiendo que son utilizados durante 15 min, ordena de forma creciente su gasto energético.


Artefacto	Potencia (W)		
Refrigerador	200		
Televisor	120		
Calefactor	1200		
Ampolleta	75		

2.-

APLICA

- 1. Un circuito está formado por 4 pilas de 1,5 V conectadas en serie y 3 resistencias de 5Ω cada una:
 - **a.** Calcula la resistencia equivalente al conectar las resistencias en serie y en paralelo.
 - b. Determina la diferencia de potencial a la cual se conecta el circuito.
 - c. Aplicando la ley de Ohm, determina la intensidad de la corriente que pasa por el circuito para cada uno de los casos, utilizando la resistencia equivalente.
 - d. Determina la potencia eléctrica para ambos circuitos.

Calcula la resistencia de acuerdo a la simbología del circuito:

DESARROLLO.

- 1.- Analiza evidencia.
- Refrigerador. 720 Kj Televisor: 432 Kj Calefactor 4320 Kj Ampolleta 270 Kj
- b) Ampolleta.
- c) Aspiradora fluctúan en potencia entre los 700 y 1300w microondas entre los 800 y 1200 w. secadoras 825 y 2000w.
- 2.- APLICA

2.1

- a) En serie R = 15Ω En paralelo. R= 1.67Ω
- b) \wedge V 1.5 +1.5 +1.5 +6V
- c) I serie = $6V/15 \Omega = 0.4 A$ I paralelo = $6V/1.67 \Omega = 3.6 A$
- d) En serie : 2.4 W En paralelo: 21,6W
- **2.2** Re= 14Ω

¿Tienes dudas? No olvides mi correo.

maribel.escobar@colegiosancarlosquilicura.cl

