

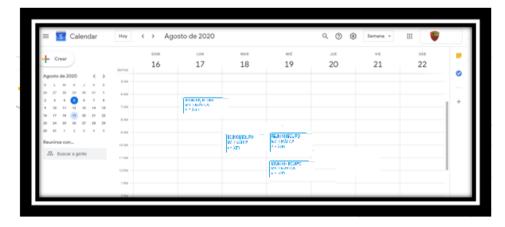
Guía N°21 Matemática Octavos (unidad 2)

Nombre	Curso	Fecha
	80	// 2020

OA 10: Mostrar que comprenden la función afín: Generalizándola como la suma de una constante con una función lineal. Trasladando funciones lineales en el plano cartesiano. Determinando el cambio constante de un intervalo a otro, de manera gráfica y simbólica, de manera manual y/o con software educativo. Relacionándola con el interés simple. Utilizándola para resolver problemas de la vida diaria y de otras asignaturas.

ENCUENTRO EN PLATAFORMA MEET

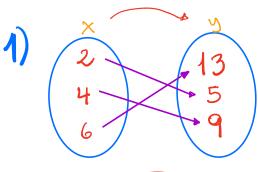
Estimado alumno:


A partir de esta semana las clases se realizarán en

Google Meet.

Cada clase tendrá un link de ingreso diferente, que estará registrado en tu Calendario, dentro de tu correo institucional.

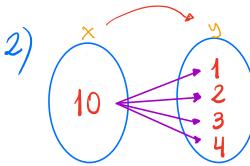
El horario será el día miércoles a las:


curso	Profesor/a	hora
8° A	Profesora Karina	09:00 hrs.
8° B	Profesor Hugo	10:00 hrs
8° C	Profesora Karina	10:00 hrs.

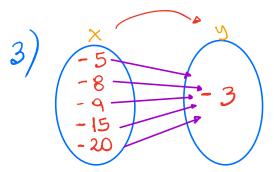
No se enviará correo con link, debes revisar tu calendario.

Solución

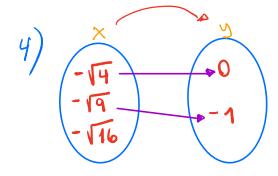
Analice si la relación entre las variables corresponde a una función, de


ser así, identifique su dominio, codominio y recorrido.

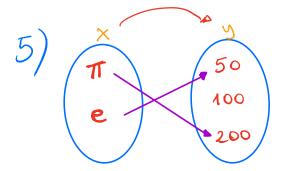
Función: 5 NO_____


Dominio $f: \{2,4,6\}$ Codominio: $\{0,5,9\}$ Recorrido *f* : ∫ 13, 5, 9 }

Recuerde que su tarea también estará cargada en Classroom, por esta plataforma es que debe subir su tarea resuelta.


5i ____ NO_X Función:

Dominio f: Codominio: Recorrido f:


Función: 5 X NO____

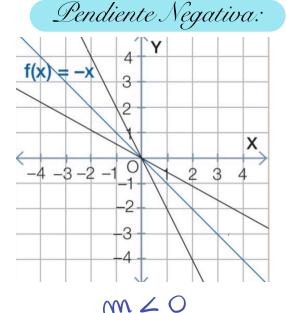
Dominio $f: \{-5, -8, -9, -15, -20\}$ Codominio: $\{-3\}$ Recorrido $f: \{-3\}$

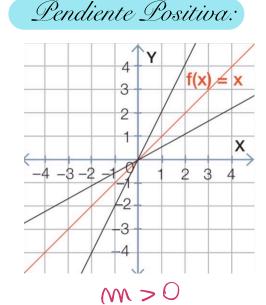
Función: 5i _____ NO__X

Dominio ≠ : Codominio: Recorrido f:

Función: 5 X Dominio f: (17, e)

Codominio: (50, 100, 200)


Recorrido f: (50, 200)


Función lineal

Como ya sabemos, una función es una relación entre dos conjuntos dados, donde a cada elemento del conjunto de salida le corresponde una única imagen en el conjunto de llegada.

Una función representada por f(X)=\m\X , con m \ 0 , corresponde a una función lineal, además la m que es quien acompaña a la x, corresponde a la pendiente de la recta, en una función lineal su recta siempre pasará por el origen (0,0).

<u> Lendiente:</u> Es la inclinación de la recta respecto al eje x.

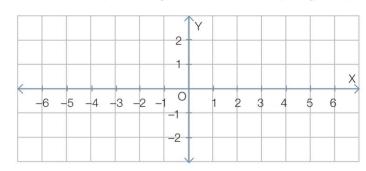
Una función lineal $f(x) = m \cdot x$, con $m \ne 0$, se puede representar gráficamente.

En el eje X o eje de las abscisas se representa la **variable independiente**, y en el eje Y o eje de las ordenadas se representa la **variable dependiente**. Además, esta función se relaciona con la **proporcionalidad directa**.

Ejemplo:

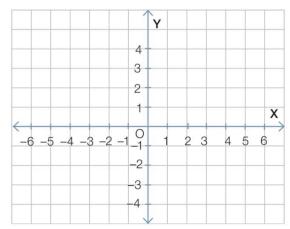
Para graficar f: A \rightarrow B, definida por f(x) = $\frac{1}{2}$ x, se puede utilizar una tabla y luego ubicar los puntos (x, f(x)) en el plano cartesiano.

х	f(x)	(x, f(x))
-2	$f(-2) = \frac{-2}{2} = -1$	(-2, -1)
0	$f(0) = \frac{0}{2} = 0$	(O, O)
2	$f(2) = \frac{2}{2} = 1$	(2, 1)
4	$f(4) = \frac{4}{2} = 2$	(4, 2)

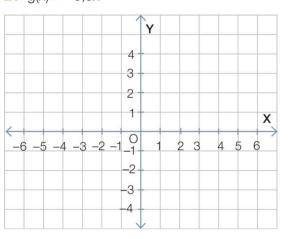


Los puntos registrados en la tabla se ubican en el plano cartesiano, y pasan por el origen O(0, 0). Además, la pendiente de la recta corresponde a, $m = \frac{\Delta y}{\Delta x} = \frac{1}{2}$, es decir, a partir del gráfico o la tabla se puede determinar la función que lo modela, en este caso es $f(x) = \frac{1}{2}x$.

Ejercito


1. Representa en el plano cartesiano los puntos registrados en la tabla y luego responde.

х	f(x)
-6	-2
-3	-1
0	0
3	1
6	2



- Escribe la función que modela la situación anterior.
- 2. Grafica las siguientes funciones lineales.

a.
$$f(x) = 2x$$

b.
$$g(x) = -0.5x$$

