

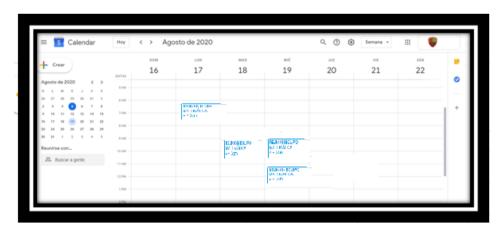
Guía N°22 Matemática Octavos (unidad 2)

Nombre	Curso	Fecha
	80	// 2020

OA 10: Mostrar que comprenden la función afín: Generalizándola como la suma de una constante con una función lineal. Trasladando funciones lineales en el plano cartesiano. Determinando el cambio constante de un intervalo a otro, de manera gráfica y simbólica, de manera manual y/o con software educativo. Relacionándola con el interés simple. Utilizándola para resolver problemas de la vida diaria y de otras asignaturas.

ENCUENTRO EN PLATAFORMA MEET

Estimado alumno:


A partir de esta semana las clases se realizarán en

Google Meet.

Cada clase tendrá un link de ingreso diferente, que estará registrado en tu Calendario, dentro de tu correo institucional.

El horario será el día miércoles a las:

curso	Profesor/a	hora
8° A	Profesora Karina	09:00 hrs.
8° B	Profesor Hugo	10:00 hrs
8° C	Profesora Karina	10:00 hrs.

No se enviará correo con link, debes revisar tu calendario.

Una función afín es una función de la forma:

 $f(x) = m \cdot x + n$, donde m y n son distintos de cero.

La constante **m** es la pendiente y **n** es el coeficiente de posición.

Si los puntos A(x_1 , y_1) y B(x_2 , y_2) pertenecen a la gráfica de la función afín (A \neq B), la pendiente se calcula utilizando $m = \frac{y_2 - y_1}{x_2 - x_1}$.

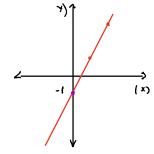
Ejemplo: La tabla que se muestra representa algunos puntos de una función afín.

х	-3	-2	-1	1
f(x)	1	-1	-3	-7

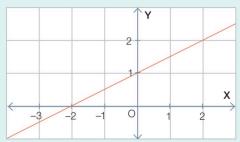
Algunos puntos que pertenecen a la gráfica son: (-3, 1); (-2, -1); (-1, -3) y (1, -7). Para calcular la pendiente se consideran 2 puntos, en particular $(-3, 1) = (x_1, y_1)$ y $(-2, -1) = (x_2, y_2)$, es decir:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{-2 - (-3)} = \frac{-2}{-2 + 3} = \frac{-2}{1} = -2$$

Luego, la función tiene la forma f(x) = -2x + n. Al remplazar uno de los puntos, en particular (-3, 1), se tiene f(-3) = 1, es decir:


$$f(-3) = -2 \cdot -3 + n = 1 \Rightarrow 6 + n = 1 \Rightarrow n = 1 - 6 \Rightarrow n = -5$$

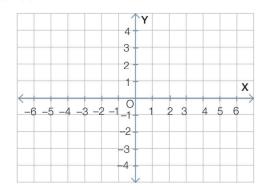
Por lo tanto, la función afín es f(x) = -2x - 5.


Coeficiente numérico: Me indica donde la recta de la función corta al eje

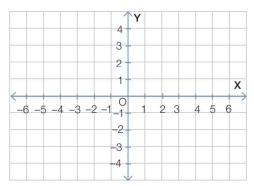
V.

Eyem: f(x) = 2x-1

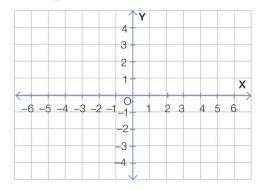
Ejemplo: La gráfica de la función $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \frac{1}{2}x + 1$, es:

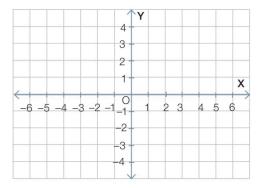


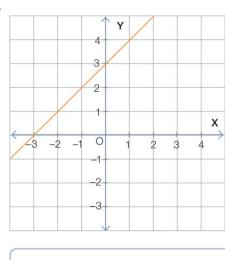
En la gráfica se observa que la recta corta a los ejes coordenados en:

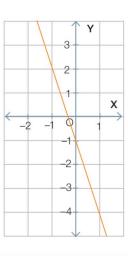


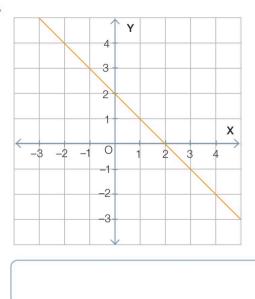
Grafica las siguientes funciones y luego anota los puntos de intersección de cada gráfica con los ejes X e Y.

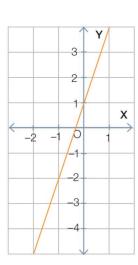

a. f(x) = 2x - 1


c. h(x) = -x + 2



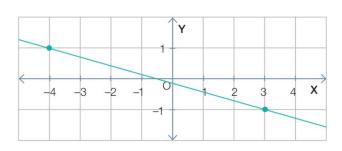

b. $g(x) = -\frac{1}{2}x - 1$


d. $p(x) = -\frac{1}{2}x + 3$



b.

d.



Resuelve los siguientes problemas.

a. La temperatura de un lugar es de 7 °C al mediodía y después desciende 2 °C cada hora. ¿Cuál es la función afin que modela esta situación y cuál será la temperatura a las 20:00 h?

Respecto de la gráfica que se muestra, ¿en qué punto la gráfica corta al eje Y?

